RNAi-Dependent and -Independent RNA Turnover Mechanisms Contribute to Heterochromatic Gene Silencing

نویسندگان

  • Marc Bühler
  • Wilhelm Haas
  • Steven P. Gygi
  • Danesh Moazed
چکیده

In fission yeast, the RNAi pathway is required for heterochromatin-dependent silencing of transgene insertions at centromeric repeats and acts together with other pathways to silence transgenes at the silent mating-type locus. Here, we show that transgene transcripts at centromeric repeats are processed into siRNAs and are therefore direct targets of RNAi. Furthermore, we show that Cid14, a member of the Trf4/5 family of poly(A) polymerases, has poly(A) polymerase activity that is required for heterochromatic gene silencing. Surprisingly, while siRNA levels in cid14Delta cells are dramatically reduced, the structural integrity of heterochromatin appears to be preserved. Cid14 resides in a complex similar to the TRAMP complex found in budding yeast, which is part of a nuclear surveillance mechanism that degrades aberrant transcripts. Our findings indicate that polyadenylation by a TRAMP-like complex contributes to robust silencing of heterochromatic genes in fission yeast via the recruitment of the exosome and/or the RNAi machinery.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhancement of RNA Interference Effect in P19 EC Cells by an RNA-dependent RNA Polymerase

Background: RNA interference (RNAi) is a phenomenon uses double-stranded RNA (dsRNA) to specifically inhibit gene expression. The non-specific silencing caused by interferon response to dsRNA in mammalian cells limits the potential of utilizing RNAi to study gene function. Duplexes of 21-nucleotide short interfering dsRNA (siRNA) inhibit gene expression by RNAi. In some organisms, siRNA can als...

متن کامل

مهار بیان ژن GFP به وسیله تداخل RNA (RNAi) در دودمان سلولی کارسینومای جنینی P19

 Introduction: RNA interference (RNAi) is a phenomenon of gene silencing that uses double-stranded RNA (dsRNA), specifically inhibits gene expression by degrading mRNA efficiently. The mediators of degradation are 21- to 23-nt small interfering RNAs (siRNA). The use of siRNAs as inhibitors of gene expression has been shown to be an effective way of studying gene function in mammalian cells.  Ai...

متن کامل

HP1 proteins form distinct complexes and mediate heterochromatic gene silencing by nonoverlapping mechanisms.

HP1 proteins are a highly conserved family of eukaryotic proteins that bind to methylated histone H3 lysine 9 (H3K9) and are required for heterochromatic gene silencing. In fission yeast, two HP1 homologs, Swi6 and Chp2, function in heterochromatic gene silencing, but their relative contribution to silencing remains unknown. Here we show that Swi6 and Chp2 exist in nonoverlapping complexes and ...

متن کامل

Transient expression of coding and non-coding regions of PVY confer resistance to virus infection

One of the most efficient mechanisms by which plants protect themselves from invading virusesis the specific RNA-dependent silencing pathway termed post-transcriptional gene silencing(PTGS). In this mechanism, resistance to a virus is engineered through the expression of asegment of the virus genomein transgenic plants. Potato VirusY (PVY) is one of the mostdamaging viruses of potato, infecting...

متن کامل

Small interfering RNA; principles, applications and challenges--

Gene silencing using RNAi (RNA interference), has recently been used as a successful laboratory technique in determining the function and control of gene expression and provides a wide range of applications in molecular biology and gene therapy. RNAi is a method of suppressing gene expression. In this direction, a single-stranded RNA molecule of about 21–23 nucleotides, called siRNA (small inte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 129  شماره 

صفحات  -

تاریخ انتشار 2007